Numerical Differentiation

Raqeebir Rab

Problem statement:

Estimate the first order derivative of f(x) = lnx at x = 1. Using the following formula:

2

- 1. First order forward difference formula
- 2. First order backward difference formula
- 3. First order central difference formula.

Compare the results with exact value 1. Assume step size h = 0.1

1.1st order Two Points Forward Difference Formula

f(x) = lnx

x	f(x)		
1	0		
1.1	0.0953101		

Two Points Forward Difference Formula

$$f'(x) = \frac{f(x+h) - f(x)}{h}$$

$$f'(1) = \frac{f(1+0.1) - f(1)}{0.1}$$

$$= \frac{ln(1.1) - ln(1)}{0.1}$$

$$= \frac{0.0953101 - 0}{0.1}$$

$$= 0.953101$$

3.2nd order Three Points Central Difference Formula

f(x) = lnx

x	f(x)
0.9	-0.10536052
1	0
1.1	0.0953101

Relative % Error				
$c = \frac{ 1 - 1.003531 }{2}$	× 1000%			
	× 10070			
= 0.35%				

Three Points Central Difference Formula

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h}$$
$$f'(1) = \frac{f(1.1) - f(0.9)}{2(0.1)}$$
$$= \frac{ln(1.1) - ln(0.9)}{0.2}$$
$$= \frac{0.0953101 - (-0.10536052)}{0.2}$$
$$= 1.003531$$

2.1st order Two Points Backward Difference Formula

f(x) = lnx

x	f(x)		
0.9	-0.10536052		
1	0		

Two Points Backward Difference Formula

$$f'(x) = \frac{f(x) - f(x - h)}{h}$$

$$f'(1) = \frac{f(1) - f(1 - 0.1)}{0.1}$$

$$= \frac{ln(1) - ln(0.9)}{0.1}$$

$$= \frac{0 - (-0.10536052)}{0.1}$$

$$= 1.0536052$$

Problem statement:

Use three points formula to estimate the 2nd order derivative of $f(x) = \frac{1}{1+x^2}$ at x = 0.5, with step size h = 0.01. Compare the result with true value.

Solution:

$$f(x) = \frac{1}{1+x^2}$$
$$f''(x) = \frac{2(3x^2 - 1)}{(x^2 + 1)^3}$$
$$= \frac{2(3(0.5)^2 - 1)}{((0.5)^2 + 1)^3}$$
$$= \frac{-0.5}{1.953125}$$
$$= -0.256$$

Current through a capacitor is given by I(t) = c dv/dt = cv'(t) where v(t) is the voltage accross the capacitor at time t and C is the capacitance value of the capacitor. Estimate the current through the capacitor at t=0.5 using central difference formula. Assume the following:

$$v(t) = (t+0.1)e^{\sqrt{t}}$$
$$C = 2F$$

 $f(t-h) = f(0.5-0.2) = v(0.3) = (0.3+0.1)e^{\sqrt{0.3}} = 0.69172405014$ $f(t) = f(0.5) = v(0.5) = (0.5+0.1)e^{\sqrt{0.5}} = 1.21686898899$ $f(t+h) = f(0.5+0.2) = v(0.7) = (0.7+0.1)e^{\sqrt{0.7}} = 1.84691462256$

x	$f(x) = \mathbf{v(t)}$
0.3	0.69172405014
0.5	1.21686898899
0.7	1.84691462256

$$I(t) = c \frac{dv}{dt} = cv'(t) = 2*(2.88797643104)$$

=5.77595amp

Three Points Central Difference Formula

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h}$$

$$f'(0.5) = \frac{f(0.7) - f(0.3)}{2(0.2)}$$

$$= \frac{1.84691462256 - 0.69172405014}{0.2}$$

$$= 2.88797643104$$

Problem statement:

A jet fighter's position on an aircraft carrier's runway was timed during landing:

<i>t</i> (s)	0	2	4	6	8	10	12	14	16
<i>x</i> (m)	0	0.7	1.8	3.4	5.1	6.3	7.3	8.0	8.4

10

Where *x* is the distance from the end of the carrier. Estimate:

- (a) Velocity $\left(\frac{dx}{dt}\right)$ and
- (b) Acceleration $\left(\frac{dv}{dt}\right)$
- At t = 10 using numerical differentiation.

Velocity at
$$t = 10$$
, $f'(t) = v(t) = \frac{dx}{dt}$

t	$f(t) = \mathbf{x}(t)$
10	6.3
12	7.3
14	8.0

So, velocity at t=10, v(t) = 0.575 m/s

Three-point forward difference formula

$$f'(t) = \frac{-3x(t) + 4x(t+h) - x(t+2h)}{2h}$$

$$f'(10) = \frac{-3(6.3) + 4(7.3) - (8.0)}{2 * 2}$$
$$= \frac{-18.9 + 29.2 - 8.0}{4}$$
$$= \frac{2.3}{4} = 0.575$$

11

Here *h*=2

Velocity at
$$t = 10$$
, $f'(t) = v(t) = \frac{dx}{dt}$

t	$f(t) = \mathbf{x}(t)$
10	6.3
12	7.3
14	8.0

So, velocity at t=10, v(t) = 0.575 m/s Three-point forward difference formula

$$f'(t) = \frac{-3x(t) + 4x(t+h) - x(t+2h)}{2h}$$

Here *h*=2

$$f'(10) = \frac{-3(6.3) + 4(7.3) - (8.0)}{2 * 2}$$
$$= \frac{-18.9 + 29.2 - 8.0}{4}$$
$$= \frac{2.3}{4} = 0.575$$

Velocity at
$$t = 10$$
, $f'(t) = v(t) = \frac{dx}{dt}$

	t	$f(t) = \mathbf{x}(t)$
8		5.1
10		6.3
12		7.3

So, velocity at t=10, v(t) = 0.55 m/s Three-point central difference formula

$$f'(t) = \frac{x(t+h) - x(t-h)}{2h}$$

Here *h*=2

$$f'(10) = \frac{7.3 - 5.1}{2 * 2}$$

$$=\frac{2.2}{4}=0.55$$

Acceleration at t = 10, $f'^{(t)} = v'(t) = a(t) = \frac{dv}{dt} = \frac{d^2x}{d^2t}$

t	$f(t) = \mathbf{x}(t)$
8	5.1
10	6.3
12	7.3

So, acceleration at t=10, $a(t) = 0.05 \text{ m/s}^2$ 2nd order three-point central difference formula

$$f''(t) = \frac{x(t+h) - 2x(t) + x(t-h)}{h^2}$$

Here *h*=2

$$f''(10) = \frac{7.3 - 2 * 6.3 + 5.1}{4}$$

$$=\frac{0.2}{4}=0.05$$

Problem statement: Compute from the following table the value of derivative of y = f(x) at x=1.7489 using Newton Forward interpolating formula.

x	f(x)
1.73	1.77284
1.74	1.55204
1.75	1.73773
1.76	1.72044
1.77	1.703329

Newton Forward Difference Table:

X	У	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$
1.73	1.77284				
		-0.2208			
1.74	1.55204		0.40649		
		0.18569		-0.60947	
1.75	1.73773		-0.20298		0.812629
		-0.01729		0.203159	
1.76	1.72044		0.000179		
		-0.017111			
1.77	1.703329				

• The value of x at you want to find f(x)at x = 1.7489

$$h = x_1 - x_0 = 1.74 - 1.73 = 0.01$$
$$u = \frac{x - x_0}{h} = \frac{1.7489 - 1.73}{0.01} = 1.89$$

Newton forward interpolation formula:

17

Now differentiating y with respect to x:

$$\frac{dy}{dx} = \frac{1}{h} \left(\Delta y_0 + \frac{2u-1}{2!} \Delta^2 y_0 + \frac{3u^2 - 6u + 2}{3!} \Delta^3 y_0 + \frac{4u^3 - 18u^2 + 22u - 6}{4!} \Delta^4 y_0 \right)$$

= $\frac{1}{0.01} \left(-0.2208 + \frac{2*1.89 - 1}{2} 0.40649 + \frac{3(1.89)^2 - 6*1.89 + 2}{6} - 0.60949 + \frac{4(1.89)^3 - 18(1.89)^2 + 22*1.89 - 6}{24} 0.812629 \right)$
= $\frac{1}{0.01} \left(-0.2208 + \frac{2.782}{2} 0.40649 + \frac{1.3763}{6} - 0.60949 + \frac{-1.712724}{4!} 0.812629 \right)$

1st derivative of y = f(x) at x = 1.7489 $\frac{dy}{dx} = 14.642679$

Problem statement:

Given below the table of function values of $f(x) = \sinh(x)$. Estimate the first derivative at x = 1.3 with h = 0.1, using three-point centrel difference formula. Compute an improved estimate using Richardson Extrapolation. Exact value of $f'(x) = \cosh(1.3) = 1.9709$.

x	1.1	1.2	1.3	1.4	1.5
f(x)	1.3356	1.5095	1.6983	1.9043	2.1293

t	$f(t) = \mathbf{x}(t)$
1.2	1.5095
1.3	1.6983
1.4	1.9043

f′(*x*)= **1.974**

Three-point central difference formula

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h}$$

Here *h*=.1

$$f'(10) = \frac{1.9043 - 1.5095}{2 * .1}$$
$$= 1.974$$

Richardson extrapolation

t	$f(t) = \mathbf{x}(t)$
1.2	1.5095
1.3	1.6983
1.4	1.9043

f′(*x*)= **1.9745**

Three-point central difference formula

$$D(h) = \frac{f(x+h) - f(x-h)}{2h}$$

Here *h*=.1

$$D(h) = \frac{1.9043 - 1.5095}{2 * .1}$$

Richardson extrapolation

t	$f(t) = \mathbf{x}(t)$
1.25	1.60191
1.3	1.6983
1.35	1.79909

f′(*x*)= **1. 9718**

