Numerical Differentiation

Raqeebir Rab

Example of Numerical differentiation

- Problem statement:

Estimate the first order derivative of $f(x)=\ln x$ at $x=1$. Using the following formula:

1. First order forward difference formula
2. First order backward difference formula
3. First order central difference formula.

Compare the results with exact value 1. Assume step size $h=0.1$

Example of Numerical differentiation

1.1 ${ }^{\text {st }}$ order Two Points Forward Difference Formula

$$
f(x)=\ln x
$$

x	$f(x)$
1	0
1.1	0.0953101

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { Relative \% Error } \\
\epsilon= \\
=\frac{|1-0.953101|}{1} \times 100 \% \\
=4.69 \%
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{f(x+h)-f(x)}{h} \\
f^{\prime}(1) & =\frac{f(1+0.1)-f(1)}{0.1} \\
& =\frac{\ln (1.1)-\ln (1)}{0.1} \\
& =\frac{0.0953101-0}{0.1} \\
& =0.953101
\end{aligned}
$$

Example of Numerical differentiation

3.2 ${ }^{\text {nd }}$ order Three Points Central Difference Formula

$$
f(x)=\ln x
$$

x	$f(x)$
0.9	-0.10536052
1	0
1.1	0.0953101

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { Relative \% Error } \\
\epsilon= \\
=\frac{|1-1.003531|}{1} \times 100 \% \\
=0.35 \%
\end{array}
\end{aligned}
$$

```
Three Points Central
Difference Formula
```

$$
\begin{aligned}
& f^{\prime}(x)= \frac{f(x+h)-f(x-h)}{2 h} \\
& f^{\prime}(1)=\frac{f(1.1)-f(0.9)}{2(0.1)} \\
&= \frac{\ln (1.1)-\ln (0.9)}{0.2} \\
&= 0.0953101-(-0.10536052) \\
& 0.2
\end{aligned}
$$

Example of Numerical differentiation

$2.1^{\text {st }}$ order Two Points Backward Difference Formula

$$
f(x)=\ln x
$$

x	$f(x)$
0.9	-0.10536052
1	0

$$
\begin{aligned}
& \quad \begin{array}{c}
\text { Relative \% Error }
\end{array} \\
& \epsilon=\frac{|1-1.0536052|}{1} \times 100 \% \\
& =5.36 \%
\end{aligned}
$$

Two Points Backward Difference Formula

$$
\begin{aligned}
f^{\prime}(x) & =\frac{f(x)-f(x-h)}{h} \\
f^{\prime}(1) & =\frac{f(1)-f(1-0.1)}{0.1} \\
& =\frac{\ln (1)-\ln (0.9)}{0.1} \\
= & \frac{0-(-0.10536052)}{0.1} \\
& =1.0536052
\end{aligned}
$$

Example of Higher Order Numerical differentiation

- Problem statement:

Use three points formula to estimate the $2^{\text {nd }}$ order derivative of $f(x)=\frac{1}{1+x^{2}}$ at x $=0.5$, with step size $h=0.01$. Compare the result with true value.
Solution:

$$
\begin{aligned}
f(x) & =\frac{1}{1+x^{2}} \\
f^{\prime \prime}(x) & =\frac{2\left(3 x^{2}-1\right)}{\left(x^{2}+1\right)^{3}} \\
& =\frac{2\left(3(0.5)^{2}-1\right)}{\left((0.5)^{2}+1\right)^{3}} \\
& =\frac{-0.5}{1.953125} \\
& =-0.256
\end{aligned}
$$

Example of Higher Order Numerical

 differentiation$2^{\text {nd }}$ order Three Points Difference Formula

$$
f(x)=\frac{1}{1+x^{2}}
$$

x	$f(x)$
0.49	0.80638658172728005
0.5	0.8
0.51	0.7935878104912308

Relative \% Error

$\epsilon=\frac{|-0.256+0.256077|}{-0.256} \times 100 \%$ $=0.03 \%$

$$
f^{\prime \prime}(x)=\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
$$

$$
f^{\prime \prime}(0.5)=\frac{f(0.51)-2 *(0.5)+f(0.49)}{(0.01)^{2}}
$$

$$
=\frac{0.7935878104912308-2 *(0.8)+0.80638658172728005}{0.0001}
$$

$$
=\frac{1.59997439221851085-1.6}{0.0001}
$$

$$
=\frac{-0.000025607}{0.0001}=-0.256077
$$

Example of Numerical differentiation

- Current through a capacitor is given by $I(t)=c \frac{d v}{d t}=c v^{\prime}(t)$ where $v(t)$ is the voltage accross the capacitor at time t and C is the capacitance value of the capacitor. Estimate the current through the capacitor at $t=0.5$ using central difference formula. Assume the following:

$$
\begin{gathered}
v(t)=(t+0.1) e^{\sqrt{t}} \\
C=2 F
\end{gathered}
$$

Example of Numerical differentiation

$$
\begin{aligned}
& f(t-h)=f(0.5-0.2)=v(0.3)=(0.3+0.1) e^{\sqrt{0.3}}=0.69172405014 \\
& f(t)=f(0.5)=v(0.5)=(0.5+0.1) e^{\sqrt{0.5}}=1.21686898899 \\
& f(t+h)=f(0.5+0.2)=v(0.7)=(0.7+0.1) e^{\sqrt{0.7}}=1.84691462256
\end{aligned}
$$

x	$f(x)=v(\mathrm{t})$
0.3	0.69172405014
0.5	1.21686898899
0.7	1.84691462256

$$
\begin{aligned}
I(t)=c \frac{d v}{d t}=c v^{\prime}(t) & =2^{*}(2.88797643104) \\
& =5.77595 \mathrm{amp}
\end{aligned}
$$

Example of Numerical differentiation

- Problem statement:

A jet fighter's position on an aircraft carrier's runway was timed during landing:

$t(\mathrm{~s})$	0	2	4	6	8	10	12	14	16
$x(\mathrm{~m})$	0	0.7	1.8	3.4	5.1	6.3	7.3	8.0	8.4

Where x is the distance from the end of the carrier. Estimate:
(a) Velocity $\left(\frac{d x}{d t}\right)$ and
(b) Acceleration $\left(\frac{d v}{d t}\right)$

At $t=10$ using numerical differentiation.

Example of Higher Order Numerical differentiation

Three-point forward difference formula

Velocity at $\mathrm{t}=10, f^{\prime}(\mathrm{t})=\mathrm{v}(\mathrm{t})=\frac{d x}{d t}$

t	$f(t)=x(t)$
10	6.3
12	7.3
14	8.0

So, velocity at $\mathrm{t}=10$, $v(t)=0.575 \mathrm{~m} / \mathrm{s}$

$$
f^{\prime}(t)=\frac{-3 x(t)+4 x(t+h)-x(t+2 h)}{2 h}
$$

Here $h=2$

$$
\begin{aligned}
f^{\prime}(10)= & \frac{-3(6.3)+4(7.3)-(8.0)}{2 * 2} \\
= & \frac{-18.9+29.2-8.0}{4} \\
& =\frac{2.3}{4}=0.575
\end{aligned}
$$

Example of Higher Order Numerical differentiation

Three-point forward difference formula

Velocity at $\mathrm{t}=10, f^{\prime}(\mathrm{t})=\mathrm{v}(\mathrm{t})=\frac{d x}{d t}$

t	$f(t)=x(t)$
10	6.3
12	7.3
14	8.0

So, velocity at $\mathrm{t}=10$, $v(t)=0.575 \mathrm{~m} / \mathrm{s}$

$$
f^{\prime}(t)=\frac{-3 x(t)+4 x(t+h)-x(t+2 h)}{2 h}
$$

Here $h=2$

$$
\begin{aligned}
f^{\prime}(10)= & \frac{-3(6.3)+4(7.3)-(8.0)}{2 * 2} \\
= & \frac{-18.9+29.2-8.0}{4} \\
& =\frac{2.3}{4}=0.575
\end{aligned}
$$

Example of Higher Order Numerical differentiation

Three-point central difference formula

Velocity at $\mathrm{t}=10, f^{\prime}(\mathrm{t})=\mathrm{v}(\mathrm{t})=\frac{d x}{d t}$

t	$f(t)=x(t)$
8	5.1
10	6.3
12	7.3

$$
f^{\prime}(t)=\frac{x(t+h)-x(t-h)}{2 h}
$$

Here $h=2$

$$
\begin{aligned}
f^{\prime}(10) & =\frac{7.3-5.1}{2 * 2} \\
= & \frac{2.2}{4}=0.55
\end{aligned}
$$

So, velocity at $\mathrm{t}=10$, $v(t)=0.55 \mathrm{~m} / \mathrm{s}$

Example of Higher Order Numerical differentiation

$2^{\text {nd }}$ order three-point central difference formula
Acceleration at $\mathrm{t}=10, f^{\prime \prime(\mathrm{t})}=\mathrm{v}^{\prime}(\mathrm{t})=$ $a(t)=\frac{d v}{d t}=\frac{d^{2} x}{d^{2} t}$

t	$f(t)=x(t)$
8	5.1
10	6.3
12	7.3

So, acceleration at $\mathrm{t}=10$, $a(t)=0.05 \mathrm{~m} / \mathrm{s}^{2}$

$$
f^{\prime \prime}(t)=\frac{x(t+h)-2 x(t)+x(t-h)}{h^{2}}
$$

Here $h=2$

$$
\begin{aligned}
f^{\prime \prime}(10)= & \frac{7.3-2 * 6.3+5.1}{4} \\
& =\frac{0.2}{4}=0.05
\end{aligned}
$$

Example of Numerical Differentiation

- Problem statement: Compute from the following table the value of derivative of $y=f(x)$ at $x=1.7489$ using Newton Forward interpolating formula.

x	$f(x)$
1.73	1.77284
1.74	1.55204
1.75	1.73773
1.76	1.72044
1.77	1.703329

Example of Numerical Differentiation

- Newton Forward Difference Table:

x	y	Δy	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$
1.73	1.77284				
		-0.2208			
1.74	1.55204		0.40649		
		0.18569		-0.60947	
1.75	1.73773		-0.20298		0.812629
		-0.01729		0.203159	
1.76	1.72044		0.000179		
		-0.017111			
1.77	1.703329				

Example of Numerical Differentiation

- The value of x at you want to find $f(x)$ at $\boldsymbol{x}=1.7489$
$h=x_{1}-x_{0}=1.74-1.73=0.01$
$u=\frac{x-x_{0}}{h}=\frac{1.7489-1.73}{0.01}=1.89$
Newton forward interpolation formula:
$y=y_{0}+u \Delta y_{0}+u(u-1) \frac{\Delta y_{0}}{2!}+u(u-1)(u-2) \frac{\Delta^{2} y_{0}}{3!}+u(u-1)(u-2)(u-3) \frac{\Delta^{3} y_{0}}{4!}+u(u-1)(u-2)(u-3)(u-$

4) $\frac{\Delta^{4} y_{0}}{5!}$

Now differentiating y with respect to x :
$\frac{d y}{d x}=\frac{1}{h}\left(\Delta y_{0}+\frac{2 u-1}{2!} \Delta^{2} y_{0}+\frac{3 u^{2}-6 u+2}{3!} \Delta^{3} y_{0}+\frac{4 u^{3}-18 u^{2}+22 u-6}{4!} \Delta^{4} y_{0}\right)$
$=\frac{1}{0.01}\left(-0.2208+\frac{2 * 1.89-1}{2} 0.40649+\frac{3(1.89)^{2}-6 * 1.89+2}{6}-0.60949+\frac{4(1.89)^{3}-18(1.89)^{2}+22 * 1.89-6}{24} 0.812629\right)$
$=\frac{1}{0.01}\left(-0.2208+\frac{2.782}{2} 0.40649+\frac{1.3763}{6}-0.60949+\frac{-1.712724}{4!} 0.812629\right)$
$1^{\text {st }}$ derivative of $y=f(x)$ at $x=1.7489$
$\frac{d y}{d x}=14.642679$

Example of Numerical Differentiation

- Problem statement:

Given below the table of function values of $f(x)=\sinh (x)$. Estimate the first derivative at $x=1.3$ with $h=0.1$, using three-point centrel difference formula. Compute an improved estimate using Richardson Extrapolation. Exact value of $f^{\prime}(x)=\cosh (1.3)=1.9709$.

x	1.1	1.2	1.3	1.4	1.5
$f(x)$	1.3356	1.5095	1.6983	1.9043	2.1293

Example of Numerical differentiation

Three-point central difference formula

t	$f(t)=x(t)$
1.2	1.5095
1.3	1.6983
1.4	1.9043

$$
f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}
$$

Here $h=.1$

$$
\begin{gathered}
f^{\prime}(10)=\frac{1.9043-1.5095}{2 * .1} \\
=1.974
\end{gathered}
$$

$f^{\prime}(x)=1.974$

Example of Numerical differentiation

Richardson extrapolation

t	$f(t)=x(t)$
1.2	1.5095
1.3	1.6983
1.4	1.9043

$$
f^{\prime}(x)=1.9745
$$

Three-point central difference formula

$$
D(h)=\frac{f(x+h)-f(x-h)}{2 h}
$$

Here $h=.1$

$$
\begin{gathered}
D(h)=\frac{1.9043-1.5095}{2 * .1} \\
=1.9745
\end{gathered}
$$

Example of Numerical differentiation

Richardson extrapolation

t	$f(t)=x(t)$
1.25	1.60191
1.3	1.6983
1.35	1.79909

$$
f^{\prime}(x)=1.9718
$$

Three-point central difference formula

$$
D(r h)=\frac{f(x+r h)-f(x-r h)}{2 r h}
$$

Here $h=.1 \quad r=.5$

$$
\begin{array}{r}
\text { rh }=0.05 \\
\quad D(r h)=\frac{1.79909-1.60191}{0.1} \\
=1.9718
\end{array}
$$

Example of Numerical differentiation

Richardson extrapolation

$$
f^{\prime}(x)=1.9709
$$

Three-point central difference formula

$$
\begin{gathered}
f^{\prime}(x)=\frac{D(r h)-r^{2} D(h)}{1-r^{2}} \\
f^{\prime}(x)=\frac{1.9718-(0.25) 1.945}{1-0.25} \\
=1.9709
\end{gathered}
$$

